cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
International Journal of Reconfigurable and Embedded Systems (IJRES)
ISSN : 20894864     EISSN : 27222608     DOI : -
Core Subject : Economy,
The centre of gravity of the computer industry is now moving from personal computing into embedded computing with the advent of VLSI system level integration and reconfigurable core in system-on-chip (SoC). Reconfigurable and Embedded systems are increasingly becoming a key technological component of all kinds of complex technical systems, ranging from audio-video-equipment, telephones, vehicles, toys, aircraft, medical diagnostics, pacemakers, climate control systems, manufacturing systems, intelligent power systems, security systems, to weapons etc. The aim of IJRES is to provide a vehicle for academics, industrial professionals, educators and policy makers working in the field to contribute and disseminate innovative and important new work on reconfigurable and embedded systems. The scope of the IJRES addresses the state of the art of all aspects of reconfigurable and embedded computing systems with emphasis on algorithms, circuits, systems, models, compilers, architectures, tools, design methodologies, test and applications.
Arjuna Subject : -
Articles 7 Documents
Search results for , issue "Vol 8, No 3: November 2019" : 7 Documents clear
Performance evaluation of an efficient five input majority gate design in QCA nanotechnology Amanpreet Sandhu; Sheifali Gupta
International Journal of Reconfigurable and Embedded Systems (IJRES) Vol 8, No 3: November 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (806.525 KB) | DOI: 10.11591/ijres.v8.i3.pp194-205

Abstract

Quantum-dot-cellular-automata (QCA) is the imminent transistor less technology, considered at nano level with high speed of operation and lower power dissipation features. The present paper proposes a novel and an efficient 5-input coplanar majority gate (PMG) with improved structural and energy efficiency. The proposed gate consumes an occupational area of 0.01μm2 with 17 QCA cells which is 50% less in comparison to the best designs reported in literature. The proposed structure is also more energy efficient because it dissipates 21.1% less energy than the best reported designs. The correctness of a proposed majority gate is verified by designing a single bit full adder. The new 1-bit full adder design is structural efficient and robust in terms of gate count and clock delay. It consumes occupational area of 0.05μm2 with 58 QCA cells showing 16.6% improvement in structural efficiency as compared to the best design reported in. It is having a gate count of 4 with the delay of 1 clock cycle. Here, the QCADesigner and QCAPro tools are utilized for the simulation and energy dissipation analysis of proposed majority gate and full adder design.
512 bit-SHA3 design approach and implementation on field programmable gate arrays S. Neelima; R. Brindha
International Journal of Reconfigurable and Embedded Systems (IJRES) Vol 8, No 3: November 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (616.163 KB) | DOI: 10.11591/ijres.v8.i3.pp169-174

Abstract

In this work, the authors consider the newly selected Hash Secure (SHA-3) algorithm on FPGA Gateway. The design is logically optimized for zone efficiency by combining the Rho steps and the one-pass algorithm. Logically recording these three steps registers leads to usage 16% of the logical resources for all implementations. This in turn reduces the latency and increases the maximum operating frequency of the project. It uses only 240 sections and has a frequency of 301.02 MHz compared to the design results with the previous FPGA implementation described in SHA3-512, the design shows the Throughput-Per-Slice (TPS) ratio of 30, 1.
Design and Implementation of Reduced Power Energy Efficient Binary Coded Decimal Adder N. Saravanakumar; K. Sakthi Sudhan; K. N. Vijeyakumar; S. Saranya
International Journal of Reconfigurable and Embedded Systems (IJRES) Vol 8, No 3: November 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (792.979 KB) | DOI: 10.11591/ijres.v8.i3.pp185-193

Abstract

This paper presents a novel architecture for low power energy binary represented decimal addition. The proposed BCD adder uses Binary to Excess Six Converter (BESC) block for constant correction to adjusts binary outputs exceeding 9 to correct decimal values and exploits the inherent advantage of reduced delay and switching, due to elimination of long carry propagation in second stage addition as in conventional design and switching OFF of the BESC block for decimal outputs less than 9. The proposed BESC-BCD adder has been designed using VHDL code and synthesized using Altera Quartus II. Experimental results demonstrates that the proposed decimal adder can lead to significant power savings and delay reduction compared to existing BCD adders which is realised in better power-delay product(PDP) performance. For example the PDP saving of the proposed BESC-BCD adder for a 1 digit and 2 digit addition implementations are 11.6% and 16.05% respectively, compared to the best of the designs used for comparison.
A body bias technique for low power full adder using XOR gate and pseudo NMOS transistor Pritty Pritty; Manoj Kumar; Mariyam Zunairah
International Journal of Reconfigurable and Embedded Systems (IJRES) Vol 8, No 3: November 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (493.258 KB) | DOI: 10.11591/ijres.v8.i3.pp162-168

Abstract

Power dissipation is a major issue in digital circuit design. As technology into developed into range, power and delay becomes vital nanometer parameters to ameliorate the performance of the circuit. To minimize the power consumption many low power techniques such as MTCMOS, stacking, body biasing techniques have been reported. In this paper, a new pseudo NMOS adder circuits have presented. It has designed using transmission gate and body bias technique. Simulation has been accomplished by using SPICE tool. The simulation result show the validity of the proposed techniques is reduces power dissipation from 0.367 mW to 0.267 mW and PDP reduced from 19.311pJ to 13.311pJ. Overall improvement of 29% in power consumption and 30% in PDP has obtained.
Designing ALU using GDI method Mohammadreza Fadaei
International Journal of Reconfigurable and Embedded Systems (IJRES) Vol 8, No 3: November 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (657.338 KB) | DOI: 10.11591/ijres.v8.i3.pp151-161

Abstract

As CMOS technology is continuously becoming smaller and smaller in nanoscale regimes, and circuit resistance to changes in the process for the design of the circuit is a major obstacle. Storage elements such as memory and flip-flops are particularly vulnerable to the change process. Power consumption is also another challenge in today's Digital IC Design. In modern processors, there are a large number of transistors, more than a billion transistors, which increases the temperature and the breakdown of its performance. Therefore, circuit design with low power consumption is a critical need for integrated circuits today. In this study, we deal with GDI techniques for designing logic and arithmetic circuits. We show that this logic in addition to low power consumption has little complexity so that arithmetic and logic circuits can be implemented with fewer transistors. Various circuits such as adders, differentiation and multiplexers, etc. have been designed and implemented using these techniques, and published in various articles. In this study, we review and evaluate the advantages and disadvantages of these circuits.
A scalable FPGA based accelerator for Tiny-YOLO-v2 using OpenCL Yap June Wai; Zulkanain Mohd Yussof; Sani Irwan Md Salim
International Journal of Reconfigurable and Embedded Systems (IJRES) Vol 8, No 3: November 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (779.62 KB) | DOI: 10.11591/ijres.v8.i3.pp206-214

Abstract

Deep Convolution Neural Network (CNN) algorithm have recently gained popularity in many applications such as image classification, video analytic, object recognition and segmentation. Being compute-intensive and memory expensive, CNN computations are common accelerated by GPUs with high power dissipations. Recent studies show implementation of CNN on FPGA and it gain higher advantage in term of energy-efficient and flexibility over Software-configurable-GPUs. The proposed framework is verified by implement Tiny-YOLO-v2 on De1SoC. The design development in this project is HLS approach to ease effort from writing complex RTL codes and provide fast verification through emulation and profiling tools provided in the OpenCL SDK. To best of our knowledge, this is the first implementation of Tiny-YOLO-v2 CNN based object detection algorithm on a small scale De1SoC board using Intel FPGA SDK for OpenCL approach.
Design and implementation of CNTFET based ternary 1x1 memories S.Tamil Selvan; M. Sundararajan
International Journal of Reconfigurable and Embedded Systems (IJRES) Vol 8, No 3: November 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (611.562 KB) | DOI: 10.11591/ijres.v8.i3.pp175-184

Abstract

In this paper presented Design and implementation of CNTFET based Ternary 1x1 RAM memories high-performance digital circuits. CNTFET Ternary 1x1 SRAM memories is implement using 32nm technology process. The CNTFET decresase the diameter and performance matrics like delay,power and power delay, The CNTFET Ternary 6T SRAM cell consists of two cross coupled Ternary inverters one is READ and another WRITE operations of the Ternary 6T SRAM cell are performed with the Tritline using HSPICE and Tanner tools in this tool is performed high accuracy. The novel based work can be used for Low Power Application and Access time is less of compared to the conventional CMOS Technology. The CNTFET Ternary 6T SRAM array module (1X1) in 32nm technology consumes only 0.412mW power and data access time is about 5.23ns.

Page 1 of 1 | Total Record : 7